

B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2014/2015 ELECTRONIC CIRCUIT ANALYSIS

(Common to EIE, E.Con.E & ECE)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Explain the classification of amplifiers based on frequency range, type of coupling, power delivered and signal handled.
 - (b) Derive the expression for A_i , R_i , A_v and R_o of CB amplifier circuit shown below.

- 2 (a) Explain different methods used for coupling multistage amplifiers with their frequency response.
 - (b) Five identical stages are coupled, each amplifier having $f_2 = 100$ KHz. Determine the overall upper cut-off frequency for the five stages.
- 3 (a) Draw the hybrid π equivalent circuit of BJT and explain the significance of each parameter. Mention typical values of hybrid π parameters.
 - (b) Given the following transistor measurements made at $I_c = 5$ mA, $V_{CE} = 10$ V and at room temperature $h_{fe} = 100$, $h_{ie} = 600 \Omega$, $[A_{ie}] = 10$ at 10 MHz, $C_e = 3$ pF. Find f_β , f_T , C_e , $r_{b'e}$ and r_{bb} .
- 4 (a) Give the low frequency analysis of FET amplifier.
 - (b) The gain of an RC coupled 2 stage FET amplifier falls by 90% of the mid band value at 400 KHz. If g_m of each FET is 10 mA/V, and total output capacitance for each stage is 20 pF. Calculate the R_L required and the stage mid band gain.
- 5 (a) Draw the circuit diagram of a voltage shunt feedback using BJT and derive expression for voltage gain with feedback.
 - (b) Draw the circuit for current shunt amplifier and justify the type of feedback. Derive the expression for A_v, β, R_i and R_o for the circuit.

Contd. in page 2

Code: 9A04402

6 (a) Why the LC oscillators are not suitable for low frequency applications. Explain the principle of working of basic LC oscillators.

R09

- (b) In a transistorized Hartley oscillator the two inductances are 2 mH and $20 \,\mu H$ while the frequency is to be changed from 950 KHz to 2050 KHz. Calculate the range which the capacitor is to be varied.
- 7 (a) Prove that in class A power amplifier if the distortion is 10% then the power given to the load increased by 1%.
 - (b) A class B push-pull power amplifier has $V_{CC} = 50$ V, the collector voltage swing from V_{CC} down to 10 V with input signal. If the transistors used as maximum power dissipation rating of 20 W. Calculate
 - (i) The load presented by the output transformer.
 - (ii) Power output.
 - (iii) D.C power input.
 - (iv) Efficiency of collector circuit.
 - (v) Power delivered to the load if the transformer efficiency is 85%.
- 8 (a) With neat circuit diagram, explain the wrking of double tuned amplifier.
- (b) What are advantages of double tuned amplifier? Derive an expression for I₂ maximum.